вторник, 29 января 2013 г.

Games

Games


Downfall: Clash of Factions - Screenshots

Posted: 29 Jan 2013 02:49 AM PST

Downfall: Clash of Factions is an addictive mixture of strategy, combat and cooperation. Join a Faction or create your own and fight the battle to rule the earth! Someone bothering you? Deploy a tank battalion to take them down! Need more food for your troops? Take it. In this world, power prevails. Is your City under attack? Get your Faction members to reinforce you and take your enemy down!

Features:
- FREE TO PLAY
- Build your city into an unstoppable war machine
- Battle with other players from around the world
- Join with other Commanders and create an invincible Faction
- 20+ types of modern offensive and defensive units
- Attack your foes with Tanks, AA artillery and Stealth Aircraft
- Defend your HQ with missiles, howitzers and anti-tank weapons.
- Gorgeous retina graphics – you have to see it to believe it.

Polymers, Vol. 5, Pages 128-141: Biodegradable Poly(butylene succinate) Composites Reinforced by Cotton Fiber with Silane Coupling Agent

Posted: 29 Jan 2013 12:00 AM PST

In this study, the use of cotton fiber (CF) as a filler in poly(butylene succinate) (PBS) and the effect of silane treatment on the mechanical properties, thermal stability, and biodegradability of PBS/CF composites are investigated. The results showed that the tensile strength of PBS was improved (15%–78%) with the incorporation of CF (10–40 wt%) and was further increased (25%–118%) when CF was treated with a silane coupling agent. Scanning electron microscopy (SEM) observation of the fracture surfaces of PBS/CF composites showed that there was slight improvement in fiber-matrix compatibility. Thermogravimetric (TG) analysis showed that the thermal stability of the composites was lower than that of neat PBS and decreased with increasing filler loading. The biobased carbon content of the composites increased with increasing CF content. The incorporation of CF (with and without silane treatment) in PBS significantly increased the biodegradation rate of the composites.

Polymers, Vol. 5, Pages 112-127: Thermal Properties of Aliphatic Polypeptoids

Posted: 29 Jan 2013 12:00 AM PST

A series of polypeptoid homopolymers bearing short (C1–C5) side chains of degrees of polymerization of 10–100 are studied with respect to thermal stability, glass transition and melting points. Thermogravimetric analysis of polypeptoids suggests stability to >200 °C. The study of the glass transition temperatures by differential scanning calorimetry revealed two dependencies. On the one hand an extension of the side chain by constant degree of polymerization decrease the glass transition temperatures (Tg) and on the other hand a raise of the degree of polymerization by constant side chain length leads to an increase of the Tg to a constant value. Melting points were observed for polypeptoids with a side chain comprising not less than three methyl carbon atoms. X-ray diffraction of polysarcosine and poly(N-ethylglycine) corroborates the observed lack of melting points and thus, their amorphous nature. Diffractograms of the other investigated polypeptoids imply that crystalline domains exist in the polymer powder.

Remote Sensing, Vol. 5, Pages 612-630: Remote Distinction of A Noxious Weed (Musk Thistle: CarduusNutans) Using Airborne Hyperspectral Imagery and the Support Vector Machine Classifier

Posted: 29 Jan 2013 12:00 AM PST

Remote detection of non-native invasive plant species using geospatial imagery may significantly improve monitoring, planning and management practices by eliminating shortfalls, such as observer bias and accessibility involved in ground-based surveys. The use of remote sensing for accurate mapping invasion extent and pattern offers several advantages, including repeatability, large area coverage, complete instead of sub-sampled assessments and greater cost-effectiveness over ground-based methods. It is critical for locating, early mapping and controlling small infestations before they reach economically prohibitive or ecologically significant levels over larger land areas. This study was designed to explore the ability of hyperspectral imagery for mapping infestation of musk thistle (Carduus nutans) on a native grassland during the preflowering stage in mid-April and during the peak flowering stage in mid-June using the support vector machine classifier and to assess and compare the resulting mapping accuracy for these two distinctive phenological stages. Accuracy assessment revealed that the overall accuracies were 79% and 91% for the classified images at preflowering and peak flowering stages, respectively. These results indicate that repeated detection of the infestation extent, as well as infestation severity or intensity, of this noxious weed in a spatial and temporal context is possible using hyperspectral remote sensing imagery.

Biology, Vol. 2, Pages 284-303: Transcriptional Regulation of the Mitochondrial Citrate and Carnitine/Acylcarnitine Transporters: Two Genes Involved in Fatty Acid Biosynthesis and β-oxidation

Posted: 29 Jan 2013 12:00 AM PST

Transcriptional regulation of genes involved in fatty acid metabolism is considered the major long-term regulatory mechanism controlling lipid homeostasis. By means of this mechanism, transcription factors, nutrients, hormones and epigenetics control not only fatty acid metabolism, but also many metabolic pathways and cellular functions at the molecular level. The regulation of the expression of many genes at the level of their transcription has already been analyzed. This review focuses on the transcriptional control of two genes involved in fatty acid biosynthesis and oxidation: the citrate carrier (CIC) and the carnitine/ acylcarnitine/carrier (CAC), which are members of the mitochondrial carrier gene family, SLC25. The contribution of tissue-specific and less tissue-specific transcription factors in activating or repressing CIC and CAC gene expression is discussed. The interaction with drugs of some transcription factors, such as PPAR and FOXA1, and how this interaction can be an attractive therapeutic approach, has also been evaluated. Moreover, the mechanism by which the expression of the CIC and CAC genes is modulated by coordinated responses to hormonal and nutritional changes and to epigenetics is highlighted.

Sensors, Vol. 13, Pages 1692-1705: A Sensor for the Measurement of the Moisture of Undisturbed Soil Samples

Posted: 29 Jan 2013 12:00 AM PST

This paper presents a very accurate sensor for the measurement of the moisture of undisturbed soil samples. The sensor relies on accurate estimation of the permittivity which is performed independently of the soil type, and a subsequent calibration. The sensor is designed as an upgrade of the conventional soil sampling equipment used in agriculture—the Kopecky cylinder. The detailed description of the device is given, and the method for determining soil moisture is explained in detail. Soil moisture of unknown test samples was measured with an absolute error below 0.0057 g/g, which is only 2.24% of the full scale output, illustrating the high accuracy of the sensor.

Sensors, Vol. 13, Pages 1679-1691: A Time-Domain CMOS Oscillator-Based Thermostat with Digital Set-Point Programming

Posted: 29 Jan 2013 12:00 AM PST

This paper presents a time-domain CMOS oscillator-based thermostat with digital set-point programming [without a digital-to-analog converter (DAC) or external resistor] to achieve on-chip thermal management of modern VLSI systems. A time-domain delay-line-based thermostat with multiplexers (MUXs) was used to substantially reduce the power consumption and chip size, and can benefit from the performance enhancement due to the scaling down of fabrication processes. For further cost reduction and accuracy enhancement, this paper proposes a thermostat using two oscillators that are suitable for time-domain curvature compensation instead of longer linear delay lines. The final time comparison was achieved using a time comparator with a built-in custom hysteresis to generate the corresponding temperature alarm and control. The chip size of the circuit was reduced to 0.12 mm2 in a 0.35-mm TSMC CMOS process. The thermostat operates from 0 to 90 °C, and achieved a fine resolution better than 0.05 °C and an improved inaccuracy of ± 0.6 °C after two-point calibration for eight packaged chips. The power consumption was 30 µW at a sample rate of 10 samples/s.

Life, Vol. 3, Pages 131-148: Quorum Sensing in Extreme Environments

Posted: 29 Jan 2013 12:00 AM PST

Microbial communication, particularly that of quorum sensing, plays an important role in regulating gene expression in a range of organisms. Although this phenomenon has been well studied in relation to, for example, virulence gene regulation, the focus of this article is to review our understanding of the role of microbial communication in extreme environments. Cell signaling regulates many important microbial processes and may play a pivotal role in driving microbial functional diversity and ultimately ecosystem function in extreme environments. Several recent studies have characterized cell signaling in modern analogs to early Earth communities (microbial mats), and characterization of cell signaling systems in these communities may provide unique insights in understanding the microbial interactions involved in function and survival in extreme environments. Cell signaling is a fundamental process that may have co-evolved with communities and environmental conditions on the early Earth. Without cell signaling, evolutionary pressures may have even resulted in the extinction rather than evolution of certain microbial groups. One of the biggest challenges in extremophile biology is understanding how and why some microbial functional groups are located where logically they would not be expected to survive, and tightly regulated communication may be key. Finally, quorum sensing has been recently identified for the first time in archaea, and thus communication at multiple levels (potentially even inter-domain) may be fundamental in extreme environments.

Genes, Vol. 4, Pages 1-32: The Replication Fork: Understanding the Eukaryotic Replication Machinery and the Challenges to Genome Duplication

Posted: 29 Jan 2013 12:00 AM PST

Eukaryotic cells must accurately and efficiently duplicate their genomes during each round of the cell cycle. Multiple linear chromosomes, an abundance of regulatory elements, and chromosome packaging are all challenges that the eukaryotic DNA replication machinery must successfully overcome. The replication machinery, the “replisome” complex, is composed of many specialized proteins with functions in supporting replication by DNA polymerases. Efficient replisome progression relies on tight coordination between the various factors of the replisome. Further, replisome progression must occur on less than ideal templates at various genomic loci. Here, we describe the functions of the major replisome components, as well as some of the obstacles to efficient DNA replication that the replisome confronts. Together, this review summarizes current understanding of the vastly complicated task of replicating eukaryotic DNA.

Resident Evil 6 DLC detailed for consoles and PC

Posted: 29 Jan 2013 02:26 AM PST

Capcom has provided an update on Resident Evil 6 DLC plans for consoles and PC.The previously announced Siege mode will be available in March for Xbox 360

The Nightly Turbo: Kostritsyn Profits $1.3 Million at FTP, Iowa Revisits Online Poker

Posted: 29 Jan 2013 01:37 AM PST

Miss any of the day's biggest poker stories? You've come to the right place. In this edition of the Nightly Turbo, we're covering Alex Kostritsyn's hot run at the high-stakes cash tables, Iowa's interest in legalizing online poker, and more.

This posting includes an audio/video/photo media file: Download Now

IJMS, Vol. 14, Pages 2862-2874: In Vitro and in Vivo Evaluation of Lactoferrin-Conjugated Liposomes as a Novel Carrier to Improve the Brain Delivery

Posted: 29 Jan 2013 12:00 AM PST

In this study, lactoferrin-conjugated PEGylated liposomes (PL), a potential drug carrier for brain delivery, was loaded with radioisotope complex, 99mTc labeled N,N-bis(2-mercaptoethyl)-N',N'-diethylethylenediamine (99mTc-BMEDA) for in vitro and in vivo evaluations. The hydrophilicity of liposomes was enhanced by PEGylation which was not an ideal brain delivery system for crossing the blood brain barrier (BBB). With the modification of a brain-targeting ligand, lactoferrin (Lf), the PEGylated liposome (PL) might become a potential brain delivery vehicle. In order to test the hypothesis in vitro and in vivo, 99mTc-BMEDA was loaded into the liposomes as a reporter with or without Lf-conjugation. The mouse brain endothelia cell line, bEnd.3 cells, was cultured to investigate the potential uptake of liposomes in vitro. The in vivo uptake by the mouse brain of the liposomes was detected by tissue biodistribution study. The results indicated that Lf-conjugated PEGylated liposome showed more than three times better uptake efficiency in vitro and two-fold higher of brain uptake in vivo than PEGlyated liposome. With the success of loading the potential Single Photon Emission Tomography (SPECT) imaging probe, 99mTc-BMEDA, Lf-PL might serve as a promising brain delivery system for loading diagnostics or therapeutics of various brain disorders.

IJMS, Vol. 14, Pages 2846-2861: Monovalent Ions and Water Dipoles in Contact with Dipolar Zwitterionic Lipid Headgroups-Theory and MD Simulations

Posted: 29 Jan 2013 12:00 AM PST

The lipid bilayer is a basic building block of biological membranes and can be pictured as a barrier separating two compartments filled with electrolyte solution. Artificial planar lipid bilayers are therefore commonly used as model systems to study the physical and electrical properties of the cell membranes in contact with electrolyte solution. Among them the glycerol-based polar phospholipids which have dipolar, but electrically neutral head groups, are most frequently used in formation of artificial lipid bilayers. In this work the electrical properties of the lipid layer composed of zwitterionic lipids with non-zero dipole moments are studied theoretically. In the model, the zwitterionic lipid bilayer is assumed to be in contact with aqueous solution of monovalent salt ions. The orientational ordering of water, resulting in spatial variation of permittivity, is explicitly taken into account. It is shown that due to saturation effect in orientational ordering of water dipoles the relative permittivity in the zwitterionic headgroup region is decreased, while the corresponding electric potential becomes strongly negative. Some of the predictions of the presented mean-field theoretical consideration are critically evaluated using the results of molecular dynamics (MD) simulation.

IJMS, Vol. 14, Pages 2832-2845: Measurement of the Interaction Between Recombinant I-domain from Integrin alpha 2 beta 1 and a Triple Helical Collagen Peptide with the GFOGER Binding Motif Using Molecular Force Spectroscopy

Posted: 29 Jan 2013 12:00 AM PST

The role of the collagen-platelet interaction is of crucial importance to the haemostatic response during both injury and pathogenesis of the blood vessel wall. Of particular interest is the high affinity interaction of the platelet transmembrane receptor, alpha 2 beta 1, responsible for firm attachment of platelets to collagen at and around injury sites. We employ single molecule force spectroscopy (SMFS) using the atomic force microscope (AFM) to study the interaction of the I-domain from integrin alpha 2 beta 1 with a synthetic collagen related triple-helical peptide containing the high-affinity integrin-binding GFOGER motif, and a control peptide lacking this sequence, referred to as GPP. By utilising synthetic peptides in this manner we are able to study at the molecular level subtleties that would otherwise be lost when considering cell-to-collagen matrix interactions using ensemble techniques. We demonstrate for the first time the complexity of this interaction as illustrated by the complex multi-peaked force spectra and confirm specificity using control blocking experiments. In addition we observe specific interaction of the GPP peptide sequence with the I-domain. We propose a model to explain these observations.

IJMS, Vol. 14, Pages 2808-2831: Phospholipids in Milk Fat: Composition, Biological and Technological Significance, and Analytical Strategies

Posted: 29 Jan 2013 12:00 AM PST

Glycerophospholipids and sphingolipids are quantitatively the most important phospholipids (PLs) in milk. They are located on the milk fat globule membrane (MFGM) and in other membranous material of the skim milk phase. They include principally phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol and phosphatidylserine, while sphingomyelin is the dominant species of sphingolipids There is considerable evidence that PLs have beneficial health effects, such as regulation of the inflammatory reactions, chemopreventive and chemotherapeutic activity on some types of cancer, and inhibition of the cholesterol absorption. PLs show good emulsifying properties and can be used as a delivery system for liposoluble constituents. Due to the amphiphilic characteristics of these molecules, their extraction, separation and detection are critical points in the analytical approach. The extraction by using chloroform and methanol, followed by the determination by high pressure liquid chromatography (HPLC), coupled with evaporative light scattering (ELSD) or mass detector (MS), are the most applied procedures for the PL evaluation. More recently, nuclear magnetic resonance spectrometry (NMR) was also used, but despite it demonstrating high sensitivity, it requires more studies to obtain accurate results. This review is focused on milk fat phospholipids; their composition, biological activity, technological properties, and significance in the structure of milk fat. Different analytical methodologies are also discussed.

IJMS, Vol. 14, Pages 2788-2807: Structural Characterization of an LPA1 Second Extracellular Loop Mimetic with a Self-Assembling Coiled-Coil Folding Constraint

Posted: 29 Jan 2013 12:00 AM PST

G protein-coupled receptor (GPCR) structures are of interest as a means to understand biological signal transduction and as tools for therapeutic discovery. The growing number of GPCR crystal structures demonstrates that the extracellular loops (EL) connecting the membrane-spanning helices show tremendous structural variability relative to the more structurally-conserved seven transmembrane α-helical domains. The EL of the LPA1 receptor have not yet been conclusively resolved, and bear limited sequence identity to known structures. This study involved development of a peptide to characterize the intrinsic structure of the LPA1 GPCR second EL. The loop was embedded between two helices that assemble into a coiled-coil, which served as a receptor-mimetic folding constraint (LPA1-CC-EL2 peptide). The ensemble of structures from multi-dimensional NMR experiments demonstrated that a robust coiled-coil formed without noticeable deformation due to the EL2 sequence. In contrast, the EL2 sequence showed well-defined structure only near its C-terminal residues. The NMR ensemble was combined with a computational model of the LPA1 receptor that had previously been validated. The resulting hybrid models were evaluated using docking. Nine different hybrid models interacted with LPA 18:1 as expected, based on prior mutagenesis studies, and one was additionally consistent with antagonist affinity trends.

IJMS, Vol. 14, Pages 2774-2787: The Interaction of Adrenomedullin and Macrophages Induces Ovarian Cancer Cell Migration via Activation of RhoA Signaling Pathway

Posted: 29 Jan 2013 12:00 AM PST

Tumor-associated macrophages (TAMs) are correlated with poor prognosis in many human cancers; however, the mechanism by which TAMs facilitate ovarian cancer cell migration and invasion remains unknown. This study was aimed to examine the function of adrenomedullin (ADM) in macrophage polarization and their further effects on the migration of ovarian cancer cells. Exogenous ADM antagonist and small interfering RNA (siRNA) specific for ADM expression were treated to macrophages and EOC cell line HO8910, respectively. Then macrophages were cocultured with HO8910 cells without direct contact. Flow cytometry, Western blot and real-time PCR were used to detect macrophage phenotype and cytokine production. The migration ability and cytoskeleton rearrangement of ovarian cancer cells were determined by Transwell migration assay and phalloidin staining. Western blot was performed to evaluate the activity status of signaling molecules in the process of ovarian cancer cell migration. The results showed that ADM induced macrophage phenotype and cytokine production similar to TAMs. Macrophages polarized by ADM promoted the migration and cytoskeleton rearrangement of HO8910 cells. The expression of RhoA and its downstream effector, cofilin, were upregulated in macrophage-induced migration of HO8910 cells. In conclusion, ADM could polarize macrophages similar to TAMs, and then polarized macrophages promote the migration of ovarian cancer cells via activation of RhoA signaling pathway in vitro.

IJMS, Vol. 14, Pages 2753-2773: Production of Pharmaceutical Proteins in Solanaceae Food Crops

Posted: 29 Jan 2013 12:00 AM PST

The benefits of increased safety and cost-effectiveness make vegetable crops appropriate systems for the production and delivery of pharmaceutical proteins. In particular, Solanaceae edible crops could be inexpensive biofactories for oral vaccines and other pharmaceutical proteins that can be ingested as minimally processed extracts or as partially purified products. The field of crop plant biotechnology is advancing rapidly due to novel developments in genetic and genomic tools being made available today for the scientific community. In this review, we briefly summarize data now available regarding genomic resources for the Solanaceae family. In addition, we describe novel strategies developed for the expression of foreign proteins in vegetable crops and the utilization of these techniques to manufacture pharmaceutical proteins.c

Molecules, Vol. 18, Pages 1775-1782: Effects of Adenosine Extract from Pholiota adiposa (Fr.) Quel on mRNA Expressions of Superoxide Dismutase and Immunomodulatory Cytokines

Posted: 29 Jan 2013 12:00 AM PST

Pholiota adiposa is a kind of edible mushroom which has long been known for its health care applications. To reveal the exact mechanism of its protective functions in humans, in this study we isolated and identified the active compound PB3 of P. adiposa for the first time by a combination of chromatography techniques, including NKA macroporous resin and Sephadex G-15. PB3, with molecular mass of 267.2 Da and molecular formula of C10H13N5O4 discovered by mass spectrum (MS) was identified to be adenosine. Mice were injected intraperitoneally with purified fraction PB3. Seven days after injection, we found a 1.5-fold increase of IL10 at the mRNA level, while a down regulated expression of IL-2, IL-6 and IFN-γ to 49.0%, 56.9% and 73.4%, respectively, was detected in spleen by real-time quantitative PCR. What’s more, SOD expression level was significantly increased by 1.6-fold compared to control. Fraction PB3 displayed anti-inflammatory potency and heightened SOD activity on the transcriptional level, which could be considered of further pharmaceutical or medication value.

Molecules, Vol. 18, Pages 1762-1774: Antioxidant Capacity of Two Novel Bioactive Fe(III)-Cyclophane Complexes

Posted: 29 Jan 2013 12:00 AM PST

The cyclophanes 2,9,25,32-tetraoxo-4,7,27,30-tetrakis(carboxymethyl)-1,4,7,10, 24,27,30,33-octaaza-17,40-dioxa[10.1.10.1]paracyclophane (PO) and 2,9,25,32-tetraoxo-4,7,27,30-tetrakis(carboxymethyl)-1,4,7,10,24,27,30,33-octaaza[10.1.10.1]paracyclophane (PC) were coordinated with iron to form cationic binuclear Fe(III) Fe2PO and Fe2PC complexes, respectively. Their antioxidant capacity, superoxide dismutase and peroxidase mimetic activity, as well as their toxicity toward peripheral blood mononuclear cells (PBMCs) were evaluated. Both Fe2PO and Fe2PC are interesting biomimetics with antioxidant capacity similar to that of ascorbic acid that prevent mortality in cultured PBMCs, with the potential to have bioactive and protective functions in disease animal models.

Комментариев нет:

Отправить комментарий